

Neurofilament light chain – a marker of neuronal injury

FROM THE SPECIALTIES

TRYGVE HOLMØY

trygve.holmoy@medisin.uio.no

Trygve Holmøy, specialist in neurology, senior consultant in the MS Unit, Department of Neurology, Akershus University Hospital, and professor at the University of Oslo.

The author has completed the ICMJE form and declares the following conflicts of interest: he has received speaker fees from Biogen, Roche, Novartis, Merck, Amgen and Sanofi, and chairs the editorial committee for the MS report published by the MS Society.

INGRID MARIE HARDANG

Ingrid Marie Hardang, specialist in medical biochemistry, senior consultant at the Department of Interdisciplinary Laboratory Medicine and Medical Biochemistry, Akershus University Hospital, and PhD candidate at the University of Oslo.

The author has completed the ICMJE form and declares no conflicts of interest.

TORMOD FLADBY

Tormod Fladby, specialist in neurology, head of the Department of Neurology and the Clinical Neurology Research Group at Akershus University Hospital, and professor at the University of Oslo.

The author has completed the ICMJE form and declares the following conflicts of interest: he has received licence fees from Pre Diagnostics AS, speaker fees from Roche, and has served on the advisory committee of Bioarctic AB.

BJØRN-EIVIND KIRSEBOM

Bjørn-Eivind Kirsebom, psychologist at the Department of Neurology, University Hospital of North Norway, researcher at the Department of Neurology, Akershus University Hospital and associate professor at UiT The Arctic University of Norway.

The author has completed the ICMJE form and declares the following conflicts of interest: he has received speaker fees from Roche, interview fees from Biogen, and has served as medical adviser for Eisai and Eli Lilly.

RAGNHILD RØYSLAND

Ragnhild Røysland, specialty registrar in medical biochemistry at the Department of Interdisciplinary Laboratory Medicine and Medical Biochemistry, Akershus University Hospital, and associate professor at the University of Oslo.

The author has completed the ICMJE form and declares no conflicts of interest.

Neurofilament light chain is released following neuronal injury and has been referred to as 'the neurologist's troponin'.

Measuring neurofilament light chain in cerebrospinal fluid has long been possible. With single molecule array (Simoa), neurofilament light chain can now also be measured in blood [\(1\)](#), and Akershus University Hospital offers analyses of both cerebrospinal fluid and serum.

Diagnosis and prognosis

The highest levels of neurofilament light chain are seen in diseases with extensive axonal damage, such as frontotemporal dementia, Creutzfeldt-Jakob disease and amyotrophic lateral sclerosis, while mildly elevated or normal values can be observed in more slowly progressing conditions, such as Alzheimer's disease and Parkinson's disease [\(1\)](#). In neurodegenerative diseases, high levels generally indicate a poor prognosis [\(1\)](#).

Amyotrophic lateral sclerosis

Neurofilament light chain has been particularly studied in multiple sclerosis and amyotrophic lateral sclerosis. The analysis can distinguish amyotrophic lateral sclerosis from relevant differential diagnoses with a sensitivity and specificity of over 80 % [\(1\)](#), and blood concentrations can rise several years

before clinical symptoms are apparent (2). Specific treatments have been developed for certain hereditary forms of amyotrophic lateral sclerosis, and neurofilament light chain is recognised as a marker of treatment response (3).

Multiple sclerosis

In multiple sclerosis, longitudinal measurements of neurofilament light chain in the blood can provide information about treatment response and prognosis (4). The most effective disease-modifying therapies reduce the concentration to normal levels. Blood concentrations rise during relapses and can remain elevated for several months (1). However, neurofilament light chain is not a replacement for MRI in assessing an active relapse, as the increase may not occur until several weeks later (5).

There are no official guidelines for measuring neurofilament light chain in multiple sclerosis. However, international experts recommend measuring it at the start of treatment and after 3–6 months, and escalating treatment in patients with persistently high levels (4). In Norway, most patients with relapsing multiple sclerosis are treated with rituximab. Persistently elevated neurofilament light chain should raise suspicion of treatment failure due to neutralising antibodies or other causes.

Use and interpretation

All doctors can order an analysis of neurofilament light chain in blood, but the test's sensitivity and specificity are too low for it to be used as a screening tool. The analysis complements clinical assessment and other diagnostic methods but is not a replacement for these. We only recommend measuring neurofilament light chain for diagnosis and follow-up of patients with neurological diseases in specialist health care. The test can be especially useful when there is suspicion of diseases involving significant neuronal damage, such as amyotrophic lateral sclerosis, frontotemporal dementia, multiple system atrophy and progressive supranuclear palsy. The Norwegian Laboratory Code Registry's fee for neurofilament light chain analysis in blood is NOK 1274 as of April 2025.

It is known that levels of neurofilament light chain in cerebrospinal fluid and blood increase with age and are influenced by body mass index and comorbidities (1). Results therefore need to be interpreted by a specialist.

REFERENCES

1. Khalil M, Teunissen CE, Lehmann S et al. Neurofilaments as biomarkers in neurological disorders - towards clinical application. *Nat Rev Neurol* 2024; 20: 269–87. [PubMed][CrossRef]

2. Benatar M, Wuu J, Lombardi V et al. Neurofilaments in pre-symptomatic ALS and the impact of genotype. *Amyotroph Lateral Scler Frontotemporal Degener* 2019; 20: 538–48. [PubMed][CrossRef]
3. Benatar M, Robertson J, Andersen PM. Amyotrophic lateral sclerosis caused by SOD1 variants: from genetic discovery to disease prevention. *Lancet Neurol* 2025; 24: 77–86. [PubMed][CrossRef]
4. Consortium of Multiple Sclerosis Centers. Guidance for use of neurofilament light chain as a cerebrospinal fluid and blood biomarker in multiple sclerosis management. *EBioMedicine* 2024; 101: 104970. [PubMed] [CrossRef]
5. Fox RJ, Cree BAC, de Sèze J et al. Temporal Relationship Between Serum Neurofilament Light Chain and Radiologic Disease Activity in Patients With Multiple Sclerosis. *Neurology* 2024; 102: e209357. [PubMed][CrossRef]

Publisert: 6 June 2025. *Tidsskr Nor Legeforen*. DOI: 10.4045/tidsskr.25.0245

Received 4.4.2025, first revision submitted 30.4.2025, accepted 21.5.2025.

Copyright: © Tidsskriftet 2026 Downloaded from tidsskriftet.no 10 February 2026.