

The imaginary effect of epidural spinal cord stimulation

OPINIONS

SASHA GULATI

sasha.gulati@ntnu.no

Sasha Gulati, specialist in neurosurgery, senior consultant at St Olav's Hospital, Trondheim University Hospital, professor at the Norwegian University of Science and Technology, and president of the Norwegian Neurosurgical Association.

The author has completed the ICMJE form and declares no conflicts of interest.

ØYSTEIN P. NYGAARD

Øystein P. Nygaard, specialist in neurosurgery, senior consultant at St Olav's Hospital, Trondheim University Hospital, professor at the Norwegian University of Science and Technology, and head of the National advisory board for surgical treatment of spine and neck diseases.

The author has completed the ICMJE form and declares no conflicts of interest.

SVEN M. CARLSEN

Sven M. Carlsen, specialist in endocrinology, senior consultant at St Olav's Hospital, Trondheim University Hospital, professor emeritus at the Norwegian University of Science and Technology, and former head of the Unit for Applied Clinical Research, St Olav's Hospital. The author has completed the ICMJE form and declares no conflicts of

IENS IVAR BROX

interest.

Jens Ivar Brox, specialist in physical medicine and rehabilitation, senior consultant at Oslo University Hospital, and professor at the University of Oslo.

The author has completed the ICMJE form and declares no conflicts of interest.

SOZABURO HARA

Sozaburo Hara, specialist in neurosurgery, senior consultant at St Olav's Hospital, Trondheim University Hospital, and research fellow at the Norwegian University of Science and Technology.

The author has completed the ICMJE form and declares no conflicts of interest.

TORE K. SOLBERG

Tore K. Solberg, specialist in neurosurgery, senior consultant at the University Hospital of North Norway, professor at University of Tromsø, the Arctic University of Norway, and head of the Norwegian Registry for Spine Surgery.

The author has completed the ICMJE form and declares no conflicts of interest.

TERJE SUNDSTRØM

Terje Sundstrøm, specialist in neurosurgery, senior consultant at Haukeland University Hospital, Bergen, and associate professor at the University of Bergen.

The author has completed the ICMJE form and declares no conflicts of interest.

GREGER LØNNE

Greger Lønne, specialist in orthopaedics, senior consultant at Innlandet Hospital Trust, and associate professor at the Norwegian University of Science and Technology.

The author has completed the ICMJE form and declares no conflicts of interest.

OLE S. SOLHEIM

Ole S. Solheim, specialist in neurosurgery, senior consultant at St Olav's Hospital, Trondheim University Hospital, and professor at the Norwegian University of Science and Technology.

The author has completed the ICMJE form and declares no conflicts of interest.

Epidural spinal cord stimulation is an expensive therapy for selected patients with chronic pain conditions. Public funding for such treatment should be reassessed.

The treatment has been used for more than 40 years in Norway and its use is increasing internationally (1). However, this does not necessarily imply that it is effective.

The most methodologically robust studies cast considerable doubt on the efficacy of this treatment. Two Cochrane meta-analyses (2, 3), two placebocontrolled trials (4, 5), a study with long-term follow- up (6), and a systematic literature review (1) provide no evidence for any effect beyond placebo. In randomised, industry-independent clinical trials, the placebo response is equal to what is reported as a treatment effect in meta-analyses of observational studies (7).

Observational studies advocating treatment effect lack placebo control or relevant control groups, and often have short follow-up times, financial ties to manufacturers, and weaknesses that prevent from drawing causal conclusions on effect (8). Pharmacoepidemiological studies show that spinal cord stimulation is not associated with a reduction in the use of opioids, healthcare services or new interventions for chronic pain (9, 10). The high rates of complications and reoperations give reason for concern with regard to patient safety. A high proportion of patients with an implanted spinal cord stimulator choose to have the system removed later, which is not unexpected given that the placebo effect generally diminishes over time (11).

«Observational studies making the argument for treatment effect often have short follow-up times, links to manufacturers, and weaknesses that prevent from drawing causal conclusions on effect»

In a recent article in the Journal of the Norwegian Medical Association, it was stated that patients treated with spinal cord stimulation report a high degree of satisfaction (12). However, satisfaction with treatment is not necessarily associated with treatment effect (13). Patient satisfaction after spinal cord stimulation is not validated as an outcome measure and most likely incorporates a large placebo effect. It is to be expected that patients who are closely followed up and receive highly specialised treatment report that they are satisfied. The strong placebo effect means that the positive experiences of both therapists and patients cannot be used as proof of the efficacy of the treatment.

There are numerous manufacturers, stimulator program settings, and treatment indications for spinal cord stimulation. Irrespective of the type of stimulation that is applied, and what indication there is for treatment, the treatment effects are insufficiently documented. Spinal cord stimulators have regulatory approvals from the US Food and Drug Administration (FDA). However, it is not necessary to document treatment effect for surgical implants to obtain approval for clinical use. In the period 2008–17, the US Food and Drug Administration received more than 80 000 reports of complications associated with spinal cord stimulators (14). Among more than 4 000 implants monitored by the FDA, spinal cord stimulators receive the third highest number of complaints.

Following a Norwegian trial that showed that spinal cord stimulation was no better than placebo for chronic radicular pain after lumbar spine surgery (5), a debate arose in Australia about whether the treatment should be covered by public health insurance (15). Doubts concerning treatment effect and high complication rates have resulted in the Australian health authorities now withdrawing approval for new implants of spinal cord stimulators (16), but strong corporate forces are highly critical of research that casts doubt on the treatment effect (17, 18).

«Doubts concerning treatment effect and high complication rates have resulted in the Australian health authorities now withdrawing approval for new implants of spinal cord stimulators»

Spinal cord stimulation is one of many examples of treatments that have no proven efficacy, but are nevertheless in widespread use. Campaigns such as Choosing Wisely aim to reduce unnecessary treatments that at worst are harmful to the patient. However, improving clinical practice takes a long time. It is conceivable that stronger measures are needed, and public funding of evidentially ineffective and insufficiently documented treatments should be reassessed. Research in recent years has cast major doubt on the effect, and in our opinion, spinal cord stimulation should only be offered in well-planned, placebo controlled clinical trials that are independent of manufacturers.

REFERENCES

- 1. Knotkova H, Hamani C, Sivanesan E et al. Neuromodulation for chronic pain. Lancet 2021; 397: 2111–24. [PubMed][CrossRef]
- 2. O'Connell NE, Ferraro MC, Gibson W et al. Implanted spinal neuromodulation interventions for chronic pain in adults. Cochrane Database Syst Rev 2021; 12.. [PubMed]
- 3. Traeger AC, Gilbert SE, Harris IA et al. Spinal cord stimulation for low back pain. Cochrane Database Syst Rev 2023; 3: CD014789. [PubMed]
- 4. Gulisano HA, Eriksen E, Bjarkam CR et al. A sham-controlled, randomized trial of spinal cord stimulation for the treatment of pain in chronic pancreatitis. Eur J Pain 2024; 28: 1627–39. [PubMed][CrossRef]
- 5. Hara S, Andresen H, Solheim O et al. Effect of Spinal Cord Burst Stimulation vs Placebo Stimulation on Disability in Patients With Chronic Radicular Pain After Lumbar Spine Surgery: A Randomized Clinical Trial. JAMA 2022; 328: 1506–14. [PubMed][CrossRef]
- 6. Hara S, Andresen H, Solheim O et al. Six-Month Follow-up of a Trial of Spinal Cord Burst Stimulation vs Placebo Stimulation and Disability in Patients With Chronic Radicular Pain After Lumbar Spine Surgery. JAMA 2023; 329: 1985–6. [PubMed][CrossRef]

- 7. Kurt E, Noordhof RK, van Dongen R et al. Spinal Cord Stimulation in Failed Back Surgery Syndrome: An Integrative Review of Quantitative and Qualitative Studies. Neuromodulation 2022; 25: 657–70. [PubMed] [CrossRef]
- 8. Ferraro MC, Gibson W, Rice ASC et al. Spinal cord stimulation for chronic pain. Lancet Neurol 2022; 21: 405. [PubMed][CrossRef]
- 9. Dhruva SS, Murillo J, Ameli O et al. Long-term Outcomes in Use of Opioids, Nonpharmacologic Pain Interventions, and Total Costs of Spinal Cord Stimulators Compared With Conventional Medical Therapy for Chronic Pain. JAMA Neurol 2023; 80: 18–29. [PubMed][CrossRef]
- 10. Vu TN, Khunsriraksakul C, Vorobeychik Y et al. Association of Spinal Cord Stimulator Implantation With Persistent Opioid Use in Patients With Postlaminectomy Syndrome. JAMA Netw Open 2022; 5. doi: 10.1001/jamanetworkopen.2021.45876. [PubMed][CrossRef]
- 11. Gatzinsky K, Brink B, Eyglóardóttir KL et al. Long-term explantation risk in patients with chronic pain treated with spinal cord or dorsal root ganglion stimulation. Reg Anesth Pain Med 2024 doi: 10.1136/rapm-2024-105719. [PubMed][CrossRef]
- 12. Ekholdt C, Granan LP, Stubhaug A et al. Ryggmargsstimulering har en plass i behandling av langvarige smertetilstander. Tidsskr Nor Legeforen 2024; 144. doi: 10.4045/tidsskr.24.0120. [PubMed][CrossRef]
- 13. Tevis SE, Kennedy GD, Kent KC. Is There a Relationship Between Patient Satisfaction and Favorable Surgical Outcomes? Adv Surg 2015; 49: 221–33. [PubMed][CrossRef]
- 14. Weiss M, Mohr H. Spinal-cord stimulators help some patients, injure others. Associated Press 27.11.2018. https://apnews.com/article/wv-state-wire-us-news-ap-top-news-sc-state-wire-health-86ba45b0a4ad443fad1214622d13e6cb Accessed 31.10.2024.
- 15. Mannix L. Insurers call for ban on spinal cord stimulator subsidies after new trial. Sydney Morning Herald 27.10.2022. https://www.watoday.com.au/national/insurers-call-for-ban-on-spinal-cord-stimulator-subsidies-after-new-trial-20221024-p5bs9m.html? ref=rss&utm_medium=rss&utm_source=rss_feed Accessed 31.10.2024.
- 16. Australian Government. Post-market review of spinal cord stimulation (SCS) devices. https://www.tga.gov.au/how-we-regulate/supply-therapeutic-good/supply-medical-device/medical-device-post-market-reviews/post-market-review-spinal-cord-stimulation-scs-devices Accessed 31.10.2024.
- 17. Traeger AC, Bero LA. Corporate Influences on Science and Health-the Case of Spinal Cord Stimulation. JAMA Intern Med 2024; 184: 129–30. [PubMed][CrossRef]

18. Broachwala M, Schuster NM. Quantitative Assessment of Conflicts of Interest in Reviews of Spinal Cord Stimulation Research. Pain Med 2024 doi: 10.1093/pm/pnae088. [PubMed][CrossRef]

Publisert: 14 November 2024. Tidsskr Nor Legeforen. DOI: 10.4045/tidsskr.24.0483 Received 10.9.2024, first revision submitted 6.10.2024, accepted 31.10.2024. Copyright: © Tidsskriftet 2025 Downloaded from tidsskriftet.no 20 December 2025.