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No human brain has the capacity to think through all
possible outcomes of an epidemic. A simulation model can
keep track of many individuals and factors that influence the
course of the epidemic; however, simulation models can
never fully replicate reality.

The healthcare service needs answers to a number of questions when epidemics
threaten. How many will be infected? How many will require intensive care
treatment? How many will die? Should we close schools? Should all those who
can, stay home from work? Who should be tested for the infection? Who should
be quarantined? How might a vaccine affect the course of the epidemic? These
types of questions cannot be answered by searching for randomised trials or
registry studies if what we are facing is, as now, a new virus with unknown
characteristics. Increasingly, statistical modelling — so-called infectious disease
models — are being used nationally and internationally to understand and
manage epidemics and the challenges related to infection outbreaks (1).

Modelling infections

Epidemic models are a type of infectious disease models and are based on
theories of infectious diseases and knowledge of previous epidemics. Such
models simulate the spread of disease from person to person with the aid of
computer models or mathematical systems of equations (Figure 1). The starting
point is that a single person can infect one or more others. This is quantified as
the basic reproduction number, R,. R is defined as the average number of new
cases generated by one infected individual in a fully susceptible population. R,
increases with the number of persons the infected individual comes into
contact with, the transmission probability of each contact, and the length of
time the infected individual is infectious. During the swine flu epidemic
(H1iN1pmo9), R, was calculated to be 1.35 (2). R is believed to be 5—7 for
chickenpox and 16—18 for measles (3). Early in an epidemic when the
proportion of susceptible individuals in the population is high, the number of
infected individuals will increase exponentially (Figure 2).
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Figure 1 Schematic overview of a simple infectious disease model. Individuals start
out as susceptible with a certain risk of being infected based on the effective
reproduction number (Reff). Infected individuals can be asymptomatic or
symptomatic, after which each individual either becomes immune or dies. The costs to
society can be divided into direct costs and indirect costs (lost productivity).
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Figure 2 Number of infected individuals with and without societal interventions
during an epidemic.

Eventually, as the proportion of susceptible individuals in the population
decreases, the effective reproduction number Rg¢f falls, where Regris Ry
multiplied by the proportion of susceptible individuals (Figure 2). An epidemic
dies out when Regfr becomes lower than 1. The total proportion of infected
individuals in a population ('attack rate") will be higher when the basic
reproduction number is higher. When R, is above 3, more than 9o % will
become infected, unless effective interventions reduce the transmission chain
of infection. Information on the basic reproduction number is important early
on in the initial phase of an epidemic, which helps informs policy makers about
how extensive the measures needed to control the epidemic must be.

The simplest epidemic models, so-called SIR models, are based on the premise
that a population can be divided into three groups: susceptible, infected, and
immune or recovered (dead). Based on the basic reproduction number and a
number of other parameters, one can calculate the number of asymptomatic
and clinical cases, and the number of hospitalised and deceased individuals. A
key element is data on the extent to which the groups 'schoolchildren’, 'workers'
and 'older people' interact with each other and with other members of their
respective groups. Such data are necessary to simulate the spread of infection
and can be obtained from social contact studies (contact tracing). National
contingency plans should, as far as possible, be based on local data because
differences in these contact patterns can give rise to substantial variation in the
development of epidemics.

Simpler models, such as cancer models, assume that the risk factors remain
constant by time and place, and that the disease in one individual does not
affect the risk of disease in others. However, with infections, the likelihood of
events change over time and from one place to another such that one individual
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or group of individuals can affect the risk of disease in others. Infectious
disease models are thus said to be dynamic, which makes developing this type
of model far more demanding.

«For all simulation models the same rule applies: the results are no
more reliable than the input data supplied»

Sensitivity analyses are important in all modelling studies. Sensitivity analysis
involves running numerous simulations while changing various parameters in
the model, such as R, or the risk of death in infected individuals. This provides
information on the extent to which the uncertainty in the data entered into the
model affects the results of the simulations. It may also be appropriate to
examine whether changes in the logical structure of the model affect the results.

Once an infectious disease model has been developed, it must be validated to
verify that it contains no miscalculations and that its predictions are in line
with reality. As new data become available, the models must be updated and re-
validated to ensure that they are consistent with the status quo, to the extent
that this is known at any given time. During an epidemic in which new
measures are being introduced on an ongoing basis, developments in the
spread of the infection and the effective reproduction number must be
continuously monitored to evaluate the effectiveness of the measures taken and
the need for new interventions.

Predicting and evaluating effects of interventions

An infectious disease model can have many applications. During an epidemic,
knowledge of the likely consequences of the outbreak is required. The
healthcare authorities need to know how the number of infected people is likely
to develop over time, how many may require hospitalisation or respiratory
support, and how many may die. In the course of a typical epidemic, there is a
period of exponential growth in the number of infected individuals, after which
the proportion of susceptible individuals in the population falls (Reff decreases)
and the epidemic dies out (Figure 2). It is also possible to simulate the effects of
interventions such as quarantine, school closures, drug treatment and vaccines
where appropriate (Figure 2).

Linking epidemic models with health economic models can provide a
framework that may assist in making health policy decisions. It can provide, for
example, some indication of the need for hospital beds, medicines and
intensive care units, and of the cost-effectiveness of interventions.

School closures and sick leave

Yiting Xue and colleagues studied the costs and benefits of school closures
during influenza pandemics in Norway (4). They assumed that individuals
infected with influenza could either remain asymptomatic, develop mild to

Covid-19: Simulation models for epidemics | Tidsskrift for Den norske legeforening



moderate disease, develop serious disease requiring hospitalisation, or die as a
result of the influenza. The outcomes were 'translated' into loss of quality-
adjusted life years. Reductions in morbidity or mortality as a result of
interventions could thus be measured in terms of quality-adjusted life years.
The model captured the costs avoided by the healthcare service as a result of
school closures, including lost productivity to society due to individuals caring
for children at home. It also captured the value of lost teaching, but
interestingly enough, there are almost no data on what pupils lose out on as a
result of short-term absence from school. The results indicated that it is
profitable to close schools for students who will not require supervision at
home during the closure. For younger children, the results depended on the
severity of the epidemic and on whether lost productivity to society due a
child's guardian requiring time off work was taken into account.

A related issue is the guidelines for sick leave in cases of suspected influenza
(5). Edwards and colleagues estimated the associated costs and benefits based
on a study of sick leave in cases of influenza-like symptoms (6). The analysis
varied the proportion of individuals who stayed away from work due to
symptoms, and the duration of their absence. The study indicated that it would
be socio-economically profitable for a high proportion of employees to
promptly take sick leave, especially for an infection with high morbidity and
mortality. Somewhat surprisingly, sick leave was most cost-effective in
epidemics with a low basic reproduction number.

Interventions such as travel bans, isolation of infected individuals and school
closures are intended to reduce the transmission of infection in an epidemic so
that the effective reproduction number falls below the basic reproduction
number. The aforementioned influenza analyses illustrate an important aspect
of such interventions: they delay the epidemic and reduce the maximum
number of cases at any single point in time (Figure 2). The most effective
measures seem able to delay the peak of an influenza epidemic by 50—-60 days,
providing healthcare services with more time to prepare for the epidemic, while
simultaneously reducing its peak burden.

Covid-19 modelling

Norway has a number of research communities with expertise in the modelling
of infectious diseases, at institutions including the University of Oslo and the
Norwegian Institute of Public Health. Researchers from these organisations
have published analyses on methicillin-resistant Staphylococcus aureus
(MRSA), herpes zoster, rotavirus, hepatitis C, human papillomavirus and
influenza.

In 2017, the Norwegian Institute of Public Health conducted a study in which 4
300 randomly selected Norwegians were asked to complete a diary of all their
contacts over the course of a single day (7). This provided data on social
networks and the possibilities for spread of infection in Norwegian society.
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In recent years, the Norwegian Institute of Public Health has also collaborated
with Telenor and the University of Oslo on the use of mobile phone data as
inputs into infectious disease models. Since February 2020, they have been
working with the Norwegian Computing Center to further develop a model that
can predict the spread of Covid-19 at the municipal level in Norway over the
next week and the next month. The model uses Telenor's mobile phone data
from Norwegian subscribers as well as daily updated epidemiological data.
Many simulations are run to estimate uncertainty, and the model is adjusted to
fit new data as they become available. Real-time data thus have a part to play in
epidemic preparedness, but unfortunately, it is still difficult to quickly retrieve
and link registry data on infections (8).

Figures from the Norwegian Institute of Public Health on March 9th suggested
that Norway could end up with approximately 22 000 hospital admissions
because of Covid-19 infection, of which 5 500 would be to intensive care units
(9). According to the calculations, at the epidemic's peak, hospitals would face 1
700 admissions simultaneously, including 600 individuals requiring intensive
care. Such figures are linked to scenario planning, in which consequences are
assessed under a given set of assumptions. The assumptions must be
interpreted with caution because knowledge about the virus and its spread was,
and still is, limited. The Norwegian Institute of Public Health's models are
updated as new information comes in. The model also makes it possible to
evaluate the effectiveness of currently implemented measures.

Even though the Covid-19 epidemic has been ongoing since December 2019, at
the time of writing (17 March 2020) the basic reproduction number (R,) is still
uncertain, although it is believed to be higher than for seasonal influenza. In a
recent study, R, was estimated at 2.35 in Wuhan on 16 January, a week before
restrictions were introduced. The effective reproduction number (Ref) was 1.05
after measures were implemented (10). The proportion of infected individuals
who die is also uncertain. The number of infected individuals is easily
underestimated because some of those infected have few or no symptoms and
because of insufficient contact tracing or testing capacity. Criteria for testing
may vary between countries, and some countries lack the necessary equipment.
Overall, this leads to the number of infected individuals being underestimated,
and accordingly to the proportion of deaths due to Covid-19 being
overestimated.

Discussion

For all simulation models, the same rule applies: the results are no more
reliable than the input data supplied ('garbage in — garbage out'). A key
limitation of infectious disease modelling is precisely the uncertainty associated
with the underlying data. However, despite this uncertainty, models can
provide us with useful insights, including which type of data it is important to
gather. When panic over HIV prevailed in Norway in the 1980s, Hein Stigum
and colleagues established a set of differential equations based on assumptions
about sexual behaviour and the characteristics of HIV (11, 12). They concluded
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that Norway had no reason to fear an extensive HIV epidemic. Some regarded
these results as counterintuitive back then, but time would show that their
assumptions and presuppositions were essentially correct.

An important insight from the modelling of infections is that no human brain
has the capacity to think through all possible outcomes in the complicated
chain of events seen in an epidemic. A system of equations or a computer
program is able to simultaneously keep track of many individuals and factors
that affect the course of the epidemic. Nevertheless, no simulation model can
fully replicate reality — it is, and will remain, a model. We therefore join the
statistician George Box in arguing that 'all models are wrong, but some are
useful' (13).

LITERATURE

1. Heesterbeek H, Anderson RM, Andreasen V et al. Modeling infectious
disease dynamics in the complex landscape of global health. Science 2015;
347: aaa4339. [PubMed][CrossRef]

2. Blasio BF, Iversen BG, Tomba GS. Effect of vaccines and antivirals during
the major 2009 A(H1N1) pandemic wave in Norway—and the influence of
vaccination timing. PLoS One 2012; 7: e30018. [PubMed][CrossRef]

3. Centers for Disease Control and Prevention. Smallpox: Disease,
Prevention, and Intervention. Slides 16—17.
https://stacks.cdc.gov/view/cdc/27929 Accessed 7.3.2020.

4. XueY, Kristiansen IS, de Blasio BF. Dynamic modelling of costs and health
consequences of school closure during an influenza pandemic. BMC Public
Health 2012; 12: 962. [PubMed][CrossRef]

5. Edwards CH, Tomba GS, Sonbo Kristiansen I et al. Evaluating costs and
health consequences of sick leave strategies against pandemic and seasonal
influenza in Norway using a dynamic model. BMJ Open 2019; 9: e027832.
[PubMed][CrossRef]

6. de Blasio BF, Xue Y, Iversen B et al. Estimating influenza-related sick leave
in Norway: was work absenteeism higher during the 2009 A(H1N1) pandemic
compared to seasonal epidemics? Euro Surveill 2012; 17: 20246. [PubMed]

7. Folkehelseinstituttet. Vaksinasjonsdekning og spredningspotensiale for
smittsomme sykdommer i Norge — prosjektbeskrivelse.
https://www.thi.no/prosjekter/vaksinasjonsdekning-og-
spredningspotensiale-prosjektbeskrivelse/ Accessed 10.3.2020.

8. Time JK. Vitenskap i en unntakstilstand. Morgenbladet 4.3.2020.
https://morgenbladet.no/aktuelt/2020/03/vitenskap-i-enunntakstilstand
Accessed 5.3.2020.

9. Kalveland J. Anslar 1 700 korona-innleggelser. Dagens Medisin 9.3.2020.
https://www.dagensmedisin.no/artikler/2020/03/09/anslar-1.700-korona-
innleggelser-pa-epidemitoppen/ Accessed 16.3.2020.

Covid-19: Simulation models for epidemics | Tidsskrift for Den norske legeforening


http://dx.doi.org/10.1126%2Fscience.aaa4339
http://dx.doi.org/10.1126%2Fscience.aaa4339
http://dx.doi.org/10.1126%2Fscience.aaa4339
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25766240&dopt=Abstract
http://dx.doi.org/10.1126%2Fscience.aaa4339
http://dx.doi.org/10.1371%2Fjournal.pone.0030018
http://dx.doi.org/10.1371%2Fjournal.pone.0030018
http://dx.doi.org/10.1371%2Fjournal.pone.0030018
http://dx.doi.org/10.1371%2Fjournal.pone.0030018
http://dx.doi.org/10.1371%2Fjournal.pone.0030018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22253862&dopt=Abstract
http://dx.doi.org/10.1371%2Fjournal.pone.0030018
https://stacks.cdc.gov/view/cdc/27929
http://dx.doi.org/10.1186%2F1471-2458-12-962
http://dx.doi.org/10.1186%2F1471-2458-12-962
http://dx.doi.org/10.1186%2F1471-2458-12-962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23140513&dopt=Abstract
http://dx.doi.org/10.1186%2F1471-2458-12-962
http://dx.doi.org/10.1136%2Fbmjopen-2018-027832
http://dx.doi.org/10.1136%2Fbmjopen-2018-027832
http://dx.doi.org/10.1136%2Fbmjopen-2018-027832
http://dx.doi.org/10.1136%2Fbmjopen-2018-027832
http://dx.doi.org/10.1136%2Fbmjopen-2018-027832
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30948617&dopt=Abstract
http://dx.doi.org/10.1136%2Fbmjopen-2018-027832
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22913978&dopt=Abstract
https://www.fhi.no/prosjekter/vaksinasjonsdekning-og-spredningspotensiale-prosjektbeskrivelse/
https://www.fhi.no/prosjekter/vaksinasjonsdekning-og-spredningspotensiale-prosjektbeskrivelse/
https://morgenbladet.no/aktuelt/2020/03/vitenskap-i-enunntakstilstand
https://www.dagensmedisin.no/artikler/2020/03/09/anslar-1.700-korona-innleggelser-pa-epidemitoppen/
https://www.dagensmedisin.no/artikler/2020/03/09/anslar-1.700-korona-innleggelser-pa-epidemitoppen/

10. Kucharski AJ, Russell TW, Diamond C et al. Early dynamics of
transmission and control of COVID-19: a mathematical modelling study.
Lancet Infect Dis 2020 doi: 10.1016/S1473-3099(20)30144-4. [PubMed]
[CrossRef]

11. Magnus P, Stigum H, Grennesby JK et al. SpdAdommer for omfanget av
heteroseksuelt betinget HIV-infeksjon i Norge i 1990-arene. Tidsskr Nor
Lageforen 1990; 110: 3225-8. [PubMed]

12. Stigum H, Magnus P, Grgnnesby JK et al. Nytten av simuleringsmodeller i
forstaelsen av HIV-epidemien. Tidsskr Nor Lageforen 1988; 108: 115—9.
[PubMed]

13. Box GE. Science and statistics. J Am Stat Assoc 1976; 71: 791—9.
[CrossRef]

Publisert: 18 March 2020. Tidsskr Nor Legeforen. DOI: 10.4045/tidsskr.20.0225
Copyright: © Tidsskriftet 2026 Downloaded from tidsskriftet.no 10 February 2026.

Covid-19: Simulation models for epidemics | Tidsskrift for Den norske legeforening


http://dx.doi.org/10.1016%2FS1473-3099(20)30144-4
http://dx.doi.org/10.1016%2FS1473-3099(20)30144-4
http://dx.doi.org/10.1016%2FS1473-3099(20)30144-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32171059&dopt=Abstract
http://dx.doi.org/10.1016%2FS1473-3099(20)30144-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=2256034&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=3353904&dopt=Abstract
http://dx.doi.org/10.1080%2F01621459.1976.10480949
http://dx.doi.org/10.1080%2F01621459.1976.10480949

